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Abstract 
 
 

Electrical activation studies of silicon implanted AlxGa1-xN grown on sapphire 

substrates were conducted as a function of ion dose, anneal temperature, and anneal time.  

Silicon ion doses of 1x1013, 5x1013, and 1x1014 cm-2 were implanted in AlxGa1-xN 

samples with aluminum mole fractions of 0.1 and 0.2 at an energy of 200 keV at room 

temperature.  The samples were proximity cap annealed at temperatures from 1100 to 

1350 ºC and anneal times of 20 to 40 minutes with a 500 Å thick AlN cap in a nitrogen 

environment. The Hall coefficient and resistivity were measured using room temperature 

Hall effect measurements.  From this data the Hall mobility, sheet carrier concentration, 

and electrical activation efficiencies were calculated. 

Activation efficiencies of almost 100% were achieved for Al0.2Ga0.8N samples 

having doses of 5x1013 and 1x1014 cm-2 after annealing at 1350 and 1300 ºC, respectively, 

for 20 minutes.  After annealing at 1250 ºC for 20 minutes, 87% efficiency was achieved 

for Al0.1Ga0.9N implanted with 1x1014 cm-2 silicon ions.  The largest observed mobility 

was 89 cm2/V·s for Al0.1Ga0.9N implanted with 1x1014 cm-2 and 5x1013 cm-2 silicon ions 

and annealed at 1250 ºC for 20 minutes and at 1200 ºC for 40 minutes, respectively. 

  The optimal anneal condition to maximize electrical activation efficiency and 

minimize nitrogen dissociation damage for Al0.1Ga0.9N was 1200 ºC anneal for 40 

minutes.  The mobilities, sheet carrier concentrations, and electrical activation 

efficiencies generally increased.  
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ELECTRICAL ACTIVATION STUDIES OF SILICON IMPLANTED 
AlxGa1-xN 

 

I. Introduction 
 

1.1 Overview 
 
 
Electrical properties of silicon implanted AlxGa1-xN grown on sapphire substrates 

were studied as a function of ion dose, anneal temperature, and anneal time.  AlxGa1-xN 

samples with aluminum mole fractions of 0.1 and 0.2 were implanted with silicon ions at 

200 keV at room temperature.  The samples were proximity cap annealed with a 500 Å 

thick AlN cap in a nitrogen environment.   Anneal temperatures ranged from 1100 to 

1350 ºC and anneal times varied from 20 to 40 minutes.  Room temperature Hall effect 

measurements were used to determine the Hall coefficient and resistivity.  From this data 

the Hall mobility, sheet carrier concentration, and electrical activation efficiencies were 

calculated.  The primary objective is to discover anneal conditions that produce activation 

efficiencies on the order of 80-100% and occur at commercially viable temperatures.  The 

secondary goal of this research is to discover the optimal anneal time and temperature for 

recovery of damage caused by ion implantation.   

There has been extensive research into recovering damage in GaN due to ion 

implantation.  Specifically, activation efficiencies of 90 and nearly 100% have been 

reached for silicon ion doses of 5x1015 cm-2 implanted at 100 and 200 keV ions and 

annealed at 1400 ºC for 10 seconds and 1350 ºC for 2 minutes respectively 

1 



 

[1:229;2:1930].  Less work has been done on AlxGa1-xN’s optimal annealing conditions.  

For 200 keV silicon ion doses of 5x1014 cm-2 in Al0.18Ga0.82N an activation efficiency of 

nearly 100% and 94% was observed for a dose of 1x1015 cm-2 after annealing at 1250 ºC 

and 1200 ºC for 25 min respectively[3:6277].  However, for lower doses on the order of 

1x1014 to 1x1013 cm-2 the results have been less successful.  Previously, activation 

efficiencies of 40, 65, and 70% have been observed in GaN implanted with and 1x1013, 

5x1013, and 1x1014 cm-2 annealed at 1350 ºC for 17 seconds[17:118]. For Al0.2Ga0.8N an 

activation efficiency of 60% was achieved with a silicon ion dose of 1x1014 cm-2 

annealed at 1350 ºC for 2 minutes [8:46]. However, there has not been a complete 

exploration of the optimum annealing conditions of low dose Al0.1Ga0.9N. 

Hall Mobilites of 65 cm2/V·s have been obtained in Al0.18Ga0.82N implanted with  

1x1015 cm-2 200keV silicon ions annealed at 1250 ºC for 25 minutes[3:6279].  However, 

for lower doses lower Hall mobilies of nearly 30 cm2/V·s have been observed in 

Al0.18Ga0.82N implanted with  1x1014 cm-2 200keV silicon ions annealed at 1350 ºC for 2 

minutes[8:44].  Moreover, there has not been a thorough exploration of the Hall 

Mobilities of low dose Al0.1Ga0.9N. 

The current semiconductor market is dominated by the silicon because it is cheap 

to grow in bulk and it works well at room temperature.  Because silicon has been so 

important to the emerging semiconductor industry, its properties have been richly 

researched and developed.  All of this research has shown where silicon is limited.  Due 

to its smaller band gap energy, silicon can not function under high temperatures, high 

electric fields, and high frequency electronic ranges.  Also, silicon’s indirect band gap 

gives it a low absorption coefficient and makes it a poor light emitter. 
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Where silicon is weak, group III-nitrides are strong.   Group-III nitrides have high 

thermal conductivities which allow them to dissipate heat.  Alloys of group III-nitrides 

such as AlxGa1-xN possess a very wide band gap which makes them ideal for extreme 

power, temperature, and frequency applications.  In addition, the alloy AlxGa1-xN has 

high cohesion energy which gives this semiconductor the ability to function in caustic 

environments and reduces its vulnerability to radiation damage.   

These strengths of group III-nitrides also have DoD applications.  The ability of 

these semiconductors to function at high power makes them ideal for use in high-power 

amplifiers, diodes, and switches.  Their high temperature applications allow these 

semiconductors to be used in munitions and aircraft engines.  Since group III-nitrides are 

naturally resistant to radiation damage and can function in large electric fields, they are 

well suited for use in satellites.  Other DoD applications include threat warning systems, 

lasers, imaging, solar blind photo diodes, and more[4:285;5:1363]. 

 

1.2 Challenges 

Despite all of the capabilities that group III-nitrides possess, there is little consensus 

on the proper ion implantation doping and annealing techniques.  The two major methods 

of doping AlxGa1-xN are in-situ doping and ion implantation.  In-situ doping takes place 

at high temperatures that inhibit good crystal growth [6:55].  It is also very time 

consuming and therefore expensive.  On the other hand, the process of ion implantation 

significantly damages the crystal structure.  Therefore it is necessary to anneal out this 

damage.   
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Work done in the past has shown that annealing at 1350 ºC removes ion 

implantation damage [7:x] and allows up to 90% electrical activation efficiency [8:ix].  

However, temperatures of this magnitude are highly impractical for commercial 

fabrication.  Moreover, recent research [9:1] shows that Al0.18Ga0.82N has almost 100% 

electrical activation efficiency when annealed at 1250 ºC for 25 minutes with a silicon 

dose of 5x1014 cm-2.  Previous work has shown that at these temperatures, damage due to 

implantation is not fully removed [7:x]; however the evidence shows that electrical 

activation efficiency remains high [8:46]. 

4 



 

II. Background 
 

2.1 AlxGa1-xN Properties and Applications 

AlxGa1-xN and other wide band gap semiconductors have been used to produce 

blue-UV laser diodes, UV detectors, and light emitting diodes.  New AlxGa1-xN 

applications will arise because of the material’s unique properties.  Chief among these are 

AlxGa1-xN’s large break down voltages, high saturation velocities, high thermal 

conductivities, and large cohesion energies.  AlxGa1-xN can be used in high power 

amplifier, switches, and diodes because of its large breakdown voltage.  This property is 

due to AlxGa1-xN’s wide band gap; the breakdown voltage of a semiconductor is 

proportional to its band gap to the three halves power [8:3].  A wide band gap is also the 

reason for AlxGa1-xN’s high saturation velocity.  A higher saturation velocity makes 

AlxGa1-xN ideal for high frequency applications like high electron mobility field effect 

transistors [10:2; 11:2535].  AlxGa1-xN has a high thermal conductivity when compared to 

other semiconductors which allows it to quickly dissipate junction heat.  This property is 

particularly useful for high temperature applications like high power lasers which could 

operate at wavelengths of just above 200 nm.  The large cohesion energy of group III-

nitrides like AlxGa1-xN makes them ideal for operation in caustic or radioactive 

environments.  Finally, group III-nitrides are desirable for use in optoelectronic devices 

because they have direct band gaps. 

A specific comparison of GaN to the properties of several other semiconductors is 

shown [17:2] in Table 1. 
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Table 1. Comparisons of semiconductor materials and properties 

 

 

2.2 Crystal Structure 

In a solid there are only three different types of matter organization [6:9] 

amorphous, single crystalline, and polycrystalline.  In an amorphous organization the 

solid is arranged randomly.  A single crystalline organization has a periodic organization 

that is well defined all the way through the crystal.  A polycrystalline arrangement 

corresponds to an ordered arrangement of atoms in sections which differ in their 

orientation through the crystal.  The three different crystalline organizations are shown 

[6:10] in Figure 1. 
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Figure 1.  The three types of crystal organizations: single crystalline (a), 
polycrystalline (b), and amorphous (c). 

 

Semiconductors have single crystalline arrangements and of the 14 possible single 

crystalline arrangements nearly all are arranged in the cubic or hexagonal symmetry 

groups.  Each lattice has a unit cell which is reproduced throughout the crystal [12:7].  

The length of that unit cell is called the lattice constant and is unique for each group III- 

nitride.   

All epitaxially grown group III-nitrides crystallize in zincblende and wurtzite 

structures.  Both structures are tetrahedrally bonded, however, the zincblende structure is 

made up of two interpenetrating face centered cubic Bravais lattices and the wurtzite 

structure consists of two interpenetrating hexagonal Bravais lattices.  The structure of 

these two crystal formations is shown [13:9] in Figure 2. 
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Figure 2. The two common types of semiconductor crystal organizations: 
zincblende (a) and wurtzite (b). 

 

There are three different types of intrinsic point defects that can exist in a crystal: 

interstitials, vacancies, and antisites.  An interstitial is when an atom, which was not 

supposed to be in the crystal structure at all, comes to rest between lattice positions.  A 

vacancy arises when a position in a crystal is left unfilled.  An antisite is formed when 

one of the atoms that is supposed to be in the crystal is in the wrong position.  For 

example if nitrogen is in a lattice position that is meant to be occupied by gallium in GaN 

then nitrogen is an antisite defect.   

Other imperfections arise when producing an alloy of two group III-nitrides.  If 

one type of semiconductor is to be grown on top of another, the lattice constants must be 

very close.  The lattice constant defines the size of the unit cell.  The zincblende 

structure, which is cubically symmetric, is described by one lattice constant represented 

in Figure 2 as “a”.  The wurtzite structure on the other hand, is hexagonally symmetric 
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and is described by two lattice constants represented as “a” and “c”.   As can be seen 

[6:25] in Figure 3, severe atomic misfit will result in unpaired atoms in the lattice.  On 

the other hand, a minor misfit will only strain the bonds but each atom will be paired. 

 

Figure 3. The defects caused by a lattice mismatch seen before (a) and after (b) 
bonds are formed. 

 

The complex defects caused by lattice mismatch are known as dislocation lines.  The 

lattice constants of AlN and GaN are within 2.4% of each other, as can be seen [6:33] in 

Figure 4. 

 

Figure 4. The lattice constants and band gaps of nitride structures in (a) wurtzite 
and (b) zincblende crystal structure.  
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2.3 Semiconductor Basics 

Normally, if an atom is separated from other atoms, its electronic energy levels 

are discrete.  However, as can be seen [14:2] in Figure 5, when the atomic separation 

decreases the degenerate energy levels become continuous bands.  The lower energy 

band is called the valance band and the higher energy band is known as the conduction 

band.  When the material is at absolute zero, all electrons are in the valence band.  

However, as the temperature increases some electrons may be thermally excited into the 

conduction band. 

 

Figure 5. Behavior of energy levels with decreasing inter-atomic distances. 
 

The energy separation of the valence and conduction bands determines the 

conductivity of the material.  Materials whose valance and conduction bands are 

overlapping are called conductors because it is very easy to move electrons through the 
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material.  An insulator has an extremely large band gap and it is nearly impossible to 

send current through the material.  Finally, semiconductors are materials whose valence 

and conduction bands are not over lapping, however, the band gap energy is small 

enough so electrons can be thermally excited into the conduction band.  The band gap 

energy of semiconductors ranges from a few meV to a little less than 6.3 eV.  For   

AlxGa1-xN it ranges from 3.4-6.2 eV depending on aluminum mole fraction. 

A semiconductor that is made up of one type of atom, such as silicon, is an 

elemental semiconductor.  The semiconductors being studied in this research are 

compound semiconductors, specifically group III-nitrides.  Group III-nitrides get their 

name because one of the constituents is in the third column of the periodic table, which 

means these elements have three valance electrons.  AlxGa1-xN is an alloy of two group 

III-nitrides, where x represents the aluminum mole fraction. 

The band gap for AlxGa1-xN at room temperature is given as: 

 )1()()1()()( xbxGaNExAlNxExE ggg −−−+= , (1) 

where Eg(GaN)=3.39 eV at room temperature, Eg(AlN)=6.20 eV at room temperature, and 

b=1.0±0.3 eV at room temperature.  Here, b is the bowing parameter [6:20].   

A semiconductor which contains no impurities is known as an intrinsic 

semiconductor.  At a given temperature some electrons will be thermally excited into the 

conduction band. The concentration of these excited electrons is known as the intrinsic 

carrier concentration.   Since the group-III nitrides have various band gap energies, their 

intrinsic carrier concentrations also vary.  Each thermally excited electron leaves a 
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vacancy when it is excited into the conduction band.  These vacancies are known as holes 

and are treated as positive charge carriers. 

Conduction 

Band 

Ionization Energy 
Donor Level 

Acceptor Level 
Ionization Energy 

Valence Band 

 

Figure 6. Energy band diagram for a semiconductor. 
 

When impurity atoms are added to a semiconductor, the semiconductor is called 

extrinsic.  The impurities inserted into the semiconductor can either be acceptors or 

donors.  The energy levels of these impurities are shown in Figure 6.  At absolute zero 

the electrons from donor impurities and holes from acceptor impurities are tightly bound 

to their respective impurity atoms.  It takes less energy to thermally excite electrons into 

the conduction band from the donor impurity than it does to excite electrons lying in the 

valence band.  Likewise, electrons in the conduction band give up less energy by 

recombing with holes in the acceptor impurity as opposed to holes in the valance band. 

When temperature is lower, below 70 K for Al0.2Ga0.8N [8:47], the only electrons 

in the conduction band come from the donor level.  This is called extrinsic conductivity.  

On the other hand when temperature gets higher, valence band to conduction band 

transitions become dominant.  This conductivity is intrinsic. 
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2.4 Band Structure 

When the spacing between the atoms in a solid becomes less than about 2 Å the 

wave functions of the outer electrons in the valance band overlap and form an electron 

cloud.  The innermost electrons remain close to the nucleus and shield the cloud of 

valance electrons from the attractive force of the nucleus.  As is illustrated in Figure 5, 

the discrete degenerate energy levels of valance electrons form a continuous band.  The 

energy of the valance and conduction bands vary as the wave vector k  changes.  The 

band diagrams of GaN and AlN are shown [15:8135; 16:413] in Figure 7. 

 

 

Figure 7. The band structure of (a) wurtzite GaN and (b) AlN. 
 

If the conduction band reaches its minimum and the valance band reachs its 

maximum value when 0=k , then the semiconductor has a direct band gap.  This point is 

referred to as Γ=0.  When this does not occur the semiconductor is said to have an 

indirect band gap.  As can be seen in Figure 7, the valance and conduction bands can be 

approximated as parabolas. 
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  The equations of the parabola for the conduction band near Γ=0 is given as: 

 

22

( )
2 *g

e

k
E k E

m
= +

⋅
 (2) 

and for the valance band near Γ=0 the equation becomes: 

 

22
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−
=

⋅
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where E(k) represents the energy of the conduction band and valance band, respectively.  

Eg corresponds to the band gap, ħ is planck’s constant; me* and mh* are the effective 

masses of electrons in the conduction band and holes in the valance band, respectively.  

The values for the effective mass are found by using the following relations 

 2
2

2

/
*

kdEd
m

c

e =  (4) 

and 2
2 /

*
kdEd

m
v

h =
2

. (5) 

In order to find out how many electrons are within a certain energy range, the product of 

the Fermi-Dirac and the density of states function must be integrated over the desired 

energy range.  The probability of finding an electron at a given energy is described by the 

Fermi-Dirac distribution, which is: 

 
1exp

1)(
+⎥

⎦

⎤
⎢
⎣

⎡ −
=

Tk
EE

Ef

B

F

, (6) 

where EF is the energy at which the probability of an electron occupying this state is 50%, 

T is the temperature, and kB is Boltzman’s constant.  The energy E is measured from the 
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bottom of the conduction band.  The distribution function of the valance and conduction 

bands is given by: 

 2/3
,32

,
, *)(

)(2
)( he

vc
vc m

EE
Eg

π

−
= , (7) 

where Ec and Ev are the energies of the valance and conduction bands at Γ=0, 

respectively.  Finally, one of the properties of semiconductors that was investigated in 

this research is the mobility of AlxGa1-xN.  Mobility, µ, is the average drift velocity per 

unit field; it is a measure of how easily charge carriers can move through a solid.  If the 

mobility of a semiconductor is known, the conductivity, σe, is given by: 

 e n q eσ µ= ⋅ ⋅ . (8) 

 

2.5 Molecular Beam Epitaxy (MBE) 

MBE is the process used to grow all of the semiconductors used in this research.  

The setup of a typical MBE system is shown [8:16] in Figure 8.  A substrate, on which 

the crystal will be grown, is placed on the rotating substrate holder.  In this research, the 

lattice constant of the AlxGa1-xN crystal and the Al2O3 substrate are significantly 

different.  This difference -- often more than 10% -- places tensile and biaxial strain on 

the crystal.  Because strain is directly proportional to the degree of the lattice mismatch, a 

buffer layer is often placed on the substrate to reduce the degree of mismatch.  This 

research used a sapphire substrate and a thin AlN buffer. 
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Figure 8. Typical set up of MBE. 
 

MBE also takes place under high vacuum conditions.  A better vacuum means 

less chance for unwanted impurities to enter into the crystal. Vacuum quality is important 

for AlxGa1-xN because aluminum’s reactivity dictates an oxygen free environment.    To 

keep the pressure under 10-11 Torr, cyropanels are used.  The substrate is placed in the 

growth chamber by a load lock.  The sample is placed on a rotating holder.  This is 

known as a Continual Azimuthal Rotation (CAR) to ensure that the chemical composition 

throughout the crystal is as homogeneous as possible.   

Crystal growth begins as effusion ovens heat the source atoms and they travel in a 

straight line, past the open effusion oven shutters, until they collide with the substrate.  
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When one monolayer of source atoms has been formed, the effusion oven shutter for that 

specific source atom is shut and the shutter for the second source atom is opened. If the 

technique of in-stiu doping was used while all of this was going on, a dopant, like silicon, 

would have traveled from an effusion oven into the crystal. Crystal growth goes on at the 

rate of about 10 monolayers per minute until the crystal is fully grown.  Then it is 

removed from the growth chamber by the same load lock that placed the substrate in the 

chamber. 

2.6 Ion Implantation 

The setup of a typical ion implantation device is seen [8:19] in Figure 9.  The first 

step in ion implantation is to ionize the dopant.  Secondly, the ions are accelerated to a 

given energy; for this research the energy is 200 keV.  Then the high energy ions are 

colluminated into a beam using vertical and horizontal scanners.  The beam is directed at 

a specific point on the AlxGa1-xN.   

 

Figure 9. Typical set up of ion implantation device. 
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The three major methods of placing a dopant into a crystal are ion implantation, 

diffusion, and in-situ doping.  The technique of doping via diffusion is an unfavorable 

technique because of the properties of AlxGa1-xN.  Diffusion doping involves heating a 

crystal coated with a dopant and letting the dopant diffuse into the crystal.  The 

temperatures required to dope AlxGa1-xN via diffusion doping are cost and time 

prohibitive due to the robust chemical composition of AlxGa1-xN.  In-stiu doping also 

requires that MBE takes place at very high temperature, and this can drive up costs and 

interfere with good crystal growth.   

Ion implantation is cheaper, faster, more flexible and generally better suited for 

AlxGa1-xN than the methods of diffusion doping and in-stiu doping.  Ion implantation is 

cheaper because it does not require the high temperatures used in diffusion doping and in-

stiu doping.  Ion implantation is faster because instead of the long process of diffusing 

dopant into the crystal or placing dopant in the layers of a growing semiconductor, the 

ions are shot almost instantly into the crystal.   

Ion implantation is also more flexible.  Using a mask, it is possible to dope a 

semiconductor with several different levels of impurities on one wafer.  Also, it is easy to 

reproduce the process of implantation; as long as the implantation temperature and 

implantation energy are the same, subsequent samples will implant in the same way.  

There is also precise dopant control; there is usually less than 1% error in the measured 

amount of dopant implanted.   

However, ion implantation has its drawbacks as well, the largest of which is 

radiation damage and to a lesser extent doping depth issues.  When a dopant, like silicon, 
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is about to collide with a crystal, it will be slowed down by two types of forces: coulomb 

repulsion from electrons (electric stopping) and the atomic strong force from the atomic 

nucleus (nuclear stopping).  As could be deduced from the nature of the forces, electric 

stopping is small in magnitude but wide in range.  Conversely, nuclear stopping is strong 

but does not occur until the silicon atom gets fairly close to a lattice position.  When 

silicon is slowed down due to nuclear stopping, it will often knock an atom out of the 

lattice leaving a point defect.  Point defects -- when clustered together-- form extended 

defects.   

Extended defects are very similar to the shifting caused by crystal and substrate 

mismatch.  The degree to which ion implantation causes extended defects in the crystal 

depends on the energy and mass of the implanted ion.  This is because the greater the 

mass and energy the more nuclear stopping will occur and the more point impurities will 

be created in the crystal.  The effects of using heavier ions for doping can be seen [17:37] 

in Figure 10.  The degree of extended defects is also related to the crystal into which the 

ions are implanted.  Typically, if the crystal is more ionic there will be less extended 

defects. 

 

Figure 10. How damage created by ion implantation is related to the mass of the 
implanted atom, where M1 is the less massive atom 
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The second drawback to ion implantation is that ion implantation only dopes the 

surface of a crystal.  As can be seen [17:33] in Figure 11, the ion dosage for 200 keV 

silicon ions implanted into GaN is a Gaussian distribution centered at 0.16 µm.  It is 

possible to place ions deeper into the crystal, however, that requires more energy, and 

more energy creates more extended defects.  After ion implantation, the crystal becomes 

slightly amorphous and it is necessary to anneal out extended defects. 

 

Figure 11. Ion implantation depth profile for silicon implanted into GaN at 
various energies. 
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2.7 Annealing 

Annealing is the process of restoring the order of a crystal and electrically 

activating implanted ions.  Annealing removes defects in the crystal structure.  These 

defects trap free charge carriers from the dopant.  There are two types of annealing used 

to repair radiation damage in group III-nitrides, rapid thermal annealing (RTA) and 

conventional furnace annealing (CFA).   This research uses the RTA method for the 

formation of ohmic contacts to the crystal.  In RTA the rate at which the anneal chamber 

is heated is greater than 50 °C per second and the time the crystal spends at this 

temperature is usually less than 60 s.  It is necessary to use the Oxy-Gon annealing 

system to anneal the damaged crystal because this CFA system can maintain 

temperatures up to 1700 °C for long periods of time.   

If annealing is not done carefully, it can cause more damage than ion 

implantation.  The first danger is that the dopant will diffuse out of the crystal.  Group 

III-V materials are especially vulnerable to out-diffusion.  An epitaxially-grown 

encapsulant is grown to prevent silicon from leaving the crystal.  This encapsulant must 

have certain properties.  It must not react chemically with the crystal or the dopant; it 

must have a coefficient of thermal expansion similar to the crystal; and also must be 

easily removed.  In this research an AlN encapsulant is used.  Another technique used to 

prevent the out diffusion is proximity cap annealing.  In this process two semiconductors 

are bound together by a tantalum wire with their implanted surfaces facing inward.  The 

second danger for annealing AlxGa1-xN is that the nitrogen will disassociate from the 

crystal.  The encapsulant and proximity cap annealing helps prevent this to some degree.  

However until multiple identical anneals are preformed, specific survival rates will 
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remain unknown.  In addition, during annealing the chamber is filled with ultra high 

purity nitrogen gas.   

2.8 Hall Effect Theory 

This research uses the Hall effect to obtain the electric activation efficiency.  The 

van der Pauw setup for a Hall effect measurement is shown [17:47] in Figure 12.  In a 

Hall effect measurement, a semiconductor is placed orthogonal to a magnetic field.  

Current is run across the semiconductor using the ohmic contacts.  This current moves 

electrons across the semiconductor, and holes move in the opposite direction.   

 

Figure 12. The path of the electrons, the current, the magnetic field, and the 
resulting Hall voltage associated with the Hall effect. 

 

Now that the holes and electrons have some velocity they a subject to a Lorentz 

force given by Equation-9 

22 



 

 )( BvqF L ×= , (9) 

where q is the fundamental charge on the hole or electron, v is the velocity of the charge 

carrier, and B is the applied magnetic field.   

Since the charge carriers have opposite charge and travel in opposite directions, 

the Lorentz force on all charge carriers will be in the same direction.  If there is a clear 

majority of one type of carrier, a Hall voltage will be produced.  From the Hall voltage 

the sheet Hall coefficient can be obtained using Equation -(10) which states: 

 HzxHs
s

Hzx
H rBIR

en
rBI

V == , (10) 

where Ix is the current applied to the sample, Bz is the magnetic field perpendicular to the 

sample, rH is the Hall factor, ns is the sheet carrier concentration, and RHs is the sheet Hall 

coefficient. The volume carrier concentration, n, and Hall coefficient, RH, can be obtained 

by the following equations: 

 tnn s /=  (11) 

and HsH RtR ⋅= , (12) 

where t is a conducting layer thickness of the sample. 
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III. Experimental Procedures 

3.1 Sample Growth 

The AlxGa1-xN used in this research was grown by SVT Technology.  Using 

MBE, one micron of AlxGa1-xN was grown on sapphire substrates with a 200 Å buffer 

layer of AlN.  The AlN is chosen as the buffer layer because its lattice constant is a closer 

match to AlxGa1-xN than sapphire.  This minimizes dislocation lines in the crystal.  The 

backside of the substrate was coated with titanium to ensure even heating during the 

growth process.  The AlxGa1-xN was grown at a rate of 1 µm per hour.  During the growth 

process, reflection high-energy electron diffraction was used to monitor the growth 

quality. 

 

3.2 Preparation and Ion Implantation  

Ion implantation is the desired method for introducing dopants into the 

semiconductor material.  This process is chosen for its precise control over the dopant 

depth profile and its ability of selective area doping.  The implantation took place at room 

temperature.  The implantation energy was 200 keV, and low ion doses were 

investigated.  To prepare the wafer for ion implantation, the titanium layer was removed 

using a hydrofluoric acid bath.  Then the samples were cut in four quarters using a wafer 

saw at Air Force Research Laboratory (AFRL).  Three quarters of the 2 inch wafer were 

doped with silicon at three different ion doses, 1x1013, 5x1013, and 1x1014 cm-2.  The 

samples were implanted by Implant Sciences Corporation.  One quarter of the wafer was 

left unimplanted as a control sample.  The silicon-implanted wafers are then divided into 
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5 mm squares using a wafer saw operated by AFRL.  The location of each square as it 

relates to the original wafer is noted.  Each sample is cleaned using acetone, methanol, 

and deionized water.  The samples were then blown dry with N2.  In this study two 

different AlxGa1-xN wafers were used one having an aluminum mole fraction of 0.1 and 

the other one having an aluminum mole fraction of 0.2. 

 

3.3 Annealing 

Annealing is a necessary step in repairing the damage to the crystal structure 

caused by ion implantation and also in activating the implanted ions.  The annealing time 

and temperature was varied in order to determine the optimum conditions for each 

material. 

Prior to annealing, the AlN-capped AlxGa1-xN samples were inscribed with a 

distinguishing mark on the backside, cleaned again, and tightly wrapped face to face 

using 5 mm-thick Ta-wire to provide extra protection from any dopant diffusion and 

nitrogen dissociation during annealing.  An Oxy-Gon annealing furnace was used to 

anneal samples at temperatures from 1100 to 1350 oC for times of 20 to 40 minutes in an 

ultra high purity nitrogen environment.  A graph of the relationship between temperature 

of the sample and oven with respect to time is shown [8:31] in Figure 13. 
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Figure 13. Temperature comparison of the Oxy-Gon furnace and sample 
temperatures (a) the furnace alone (b) as a function of time. 

 

Figure 13 (b) shows a dip in temperature this is due to the sample being loaded 

into the furnace chamber.  The temperatures were measured using two thermocouples.  

One thermocouple was place inside the furnace and the other was placed on the sample 

mount.  When the sample is loaded into the chamber and the isolation value is closed 

time is zero. 

 

3.4 Ohmic contacts  

The formation of high quality ohmic contacts that have low contact resistivity and 

high light transmittance is important for further refinement of electrical and optical 
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devices.  Surface treatments are often employed to remove a layer of contamination 

between the sample surfaces and the contact metal. 

Ohmic contacts are required for taking electrical measurements.  Prior to 

metallization, the AlN cap layer was selectively removed by etching for 10 minutes in a 

solution of 0.5 M KOH at 95 °C, after which the samples were rinsed in deionized water 

(DI) and immediately placed in boiling aqua regia (3:1, HCl:HNO3) for 2 minutes.  The 

samples were then removed from the acid, rinsed in DI, and blown dry with N2.  The 

annealed samples were examined with an optical microscope..  The samples are then 

place on a van der Pauw shadow mask in preparation for electron-beam evaporation.  The 

metal is deposited under vacuum pressure of 10-6 Torr.  The contacts used in this study 

consisted of a base layer of 300 Å of titanium followed by 800 Å of aluminum, 1200 Å of 

titanium and a final 550 Å thick layer of gold.  The sample is allowed to cool for 30 

minutes before it is removed from the electron-beam evaporator which is under vacuum.  

Following the metal deposition, the samples are annealed in a nitrogen environment at 

900 ºC for 45 seconds using a rapid thermal annealing (RTA) system.  The ohmicity of 

the contacts is then inspected using a voltage current probe. 

3.5 Hall effect measurements 

The Hall coefficient, RH, and sheet resitivity, ρs, measurements are taken using the 

van der Pauw technique.  This technique is advantageous because it does not require that 

the ohmic contacts form a perfect square, only that they be on the perimeter of the 

sample.  Eight measurements of voltage and current are averaged to calculate the sheet 

resitivity.  Four measurements of voltage and current, taken under forward and reverse 

magnetic fields are averaged to get the Hall coefficient. The sheet resitivity and the Hall 
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coefficient are used to calculate sheet carrier concentration and Hall mobility using the 

following equations: 

 H

H
s Rq

r
N

⋅
=

 (13) 

and s

H
H ρ

µ =
R

, (14) 

where q is the elementary charge and rH is the Hall factor, which although it 

sometimes ranges from one to two, is taken to be unity.  Using the sheet carrier 

concentration, the activation efficiency is calculated in the following manner: 

 D
N

A s=
 (15) 

where A is the activation efficiency, and D is the effective implantation dose. 

The measurements of sheet resistivity, mobility, and sheet carrier concentration 

are taken four times and if the measurements are within 4% of each other, the data is 

used.  The set up of the Hall measurement system is shown in Figure 14. 
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Figure 14. Setup of the Hall Measurement system. 
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IV. Results and Discussion 
 

 

4.1 Room Temperature Hall Measurements of Al0.1Ga0.9N 

The Al0.1Ga0.9N samples were implanted with 3 different silicon ion doses of 

1x1013, 5x1013, and 1x1014 cm-2 at room temperature and at 200 keV.  The samples were 

annealed at four different temperatures of 1100, 1150, 1200, and 1250 ºC for 20 minutes.  

The samples were annealed in the Oxy-Gon anneal system.  The Hall coefficient and 

resistivity were measured using room temperature Hall effect measurements.  From this 

data the Hall mobility, sheet carrier concentration, and electrical activation efficiencies 

were calculated. 

The samples annealed at 1150 and 1200 ºC displayed minor damage, less than 

10%, on the surface.  However, the control sample and the sample implanted annealed at 

1250 ºC for 20 minutes with 1x1013 cm-2 silicon showed extreme damage, about 60 % 

surface damage, indicating a complete destruction of the AlN cap.  The damage was so 

extensive that ohmic contacts could not be placed on these samples. The liquid gallium 

on the surface signifies nitrogen dissociation.  The results of Hall effect and sheet 

resistivity measurements made on the implanted Al0.1Ga0.9N samples are shown in  

Figure 15. 

In Figure 15, the carrier concentrations of the Al0.1Ga0.9N have had the 

background carrier concentration subtracted out of the measured carrier concentration.  

The subtracted background carrier concentrations are shown in Figure 15.   

 

30 



 

31 

1100 1150 1200 1250

1012

1013

1014

 

 

 

Anneal Temperature (oC)

S
he

et
 C

ar
ri

er
 C

on
se

nt
ra

tio
n 

(c
m

-2
)

Al0.1Ga0.9N:Si
 1x1014cm-2

 5x1013cm-2

 1x1013cm-2

 unimplanted

Figure 15. Room temperature sheet carrier concentration of implanted silicon in 
Al0.1Ga0.9N annealed for 20 minutes as a function of anneal 
temperature . 
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Figure 16. Room temperature sheet carrier concentration of implanted silicon in 
Al0.1Ga0.9N as a function of implanted ion dose. 
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The background concentration comes from unimplanted samples that are annealed at 

1100, 1150, 1200, 1250 ºC for 20 minutes.  The average back ground sheet carrier  

concentration was 9.8x1012 cm-2. 

Figure 15 shows that as anneal temperature increased all samples showed higher 

sheet carrier concentrations.  The highest sheet carrier concentration of 8.28x1013cm-2 

was obtained from the sample implanted with 1x1014 cm-2 silicon ions and annealed at 

1250 ºC for 20 minutes.  At the same temperature and for the same time, the sample 

implanted with 5x1013 cm-2 silicon ions showed a sheet carrier concentration of 3.17x1013 

cm-2.  The sample implanted with 1x1013 cm-2 silicon ions showed very low sheet carrier 

concentration when annealed for 20 minutes at 1100, 1150, 1200, and 1250 ºC.  The 

sample showed only 7x1011 to 2x1011cm-2 above the background sheet carrier 

concentration.  The sheet carrier concentration is a function of implanted silicon and 

anneal temperature.  The relation between implantation dose and sheet carrier 

concentration is shown in Figure 16.   

The Hall mobilities of the implanted Al0.1Ga0.9N samples are shown in Figure 17.  

The highest mobilities of 89 cm2/V·s were obtained by the Al0.1Ga0.9N samples implanted 

with both 1x1014 and 5x1013 cm-2 silicon.  As the anneal temperature is increased, the 

mobilities of all samples increased.  The values for mobility range from 4.3 to             

89.3 cm2/V·s.  

The electrical activation efficiencies of the implanted silicon in the Al0.1Ga0.9N 

samples are shown in Figure 18.  The highest activation efficiencies for the 1x1014 and 

5x1013 cm-2 silicon implanted samples were 87.2 and 66.8%, respectively, achieved by 

annealing at 1250 ºC for 20 minutes.   
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Figure 17. Room temperature Hall mobility of Al0.1Ga0.9N annealed for 20 
minutes as a function of anneal temperature . 
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Figure 18. Room temperature electrical activation efficiency of implanted silicon 
in Al0.1Ga0.9N annealed for 20 minutes as a function of anneal 
temperature . 



 

The damage caused at 1250 ºC to the control sample and the sample implanted 

with 1x1013 cm-2 silicon was great, over 50% surface damage, due to damage to the AlN 

cap.  Moreover, 1250 ºC is not a commercially viable temperature for the fabrication of 

semiconductor devices.  Therefore 1200 ºC was chosen as the temperature for anneal 

time dependent Hall measurements.  The Al0.1Ga0.9N samples implanted with 3 different 

silicon ion doses of 1x1013, 5x1013, and 1x1014 cm-2 at room temperature at 200 keV were 

annealed at 1200 ºC for 30 and 40 minutes.  The samples were annealed in the Oxy-Gon 

anneal system.  Hall measurement data from the previous anneal at 1200 ºC for 20 

minutes were used to find optimum anneal time.  

The samples annealed for 20 minutes showed some minor signs of damage in the 

form of small gallium bubbles on the sample surface.  When anneal time was increased to 

30 minutes, the number of gallium bubbles remained comparable.  Finally, at an anneal 

time of 40 minutes, although the number of gallium bubbles did not change a great deal 

they were larger and covered more surface area.  The minor damage due to nitrogen 

dissociation in the samples annealed at 1200 ºC for 20 minutes did not prevent the 

samples from forming good ohmic contacts.  The results of Hall effect and sheet 

resistivity measurements made on the implanted Al0.1Ga0.9N samples are shown in Figure 

19. 

In Figure 19, the carrier concentrations of the Al0.1Ga0.9N samples have had the 

background carrier concentration subtracted out of the measured carrier concentration.  

The subtracted background carrier concentrations are shown in Figure 19.  The carrier 

concentration is a function of dopant level and anneal time.  In general, as the samples  

36 



 

20 30 40
1011

1012

1013

1014

 

S
he

et
 C

ar
ri

er
 C

on
ce

nt
ra

tio
n 

(c
m

-2
)

Anneal Time (min)

Al0.1Ga0.9N:Si
 1x1014cm -2

 5x1013cm -2

 1x1013cm -2

 unimplanted

Figure 19. Room temperature sheet carrier concentration of implanted silicon in 
Al0.1Ga0.9N  annealed at 1200 °C as a function of anneal time. 
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were annealed for longer times the samples showed higher sheet carrier concentrations.  

The highest sheet carrier concentration of 7.13x1013cm-2 was obtained from the sample 

implanted with 1x1014 cm-2 silicon and annealed for 40 minutes at 1200 ºC.  At the same 

temperature and for the same time the sample implanted with 5x1013 cm-2 silicon showed 

a sheet carrier concentration of 3.97x1013 cm-2.  The sample implanted with 1x1013 cm-2 

silicon showed very low sheet carrier concentration for the anneals of 20 and 30 minute 

duration.  However, at an anneal time of 40 minutes the sheet carrier concentration 

jumped 7.84 x1012 cm-2 above the background sheet carrier concentration.  This is an 

indication that some crystal damage due to ion implantation was recovered with a longer 

anneal at 1200 ºC.   

The Hall mobilities of the implanted Al0.1Ga0.9N samples are shown in Figure 20.  

The highest mobilities of 89.0 and 88.1 cm2/V·s were obtained by the Al0.1Ga0.9N 

samples implanted with 5x1013 and 1x1014 cm-2 silicon, respectively.  Both samples were 

annealed for 40 minutes at 1200 ºC.  These mobilities are almost identical to the same 

results achieved by annealing Al0.1Ga0.9N samples at 1250 ºC for 20 minutes.  As the 

anneal time is increased, the mobility of all samples increase.  The values for mobility 

ranged from 17.6 to 89.0 cm2/V·s.  The mobility of a sample implanted with 1x1013 cm-2 

silicon increased to 34.6 cm2/V·s above when annealed at 1200 ºC for 40 minutes, 

indicating a recovery of implantation damage. 

The electrical activation efficiencies of the implanted samples are shown in 

Figure 21.  The efficiencies of the silicon implanted samples are based on the activation 

of implanted silicon alone and do not include the values of background charge carriers.   
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Figure 20. Room temperature Hall mobility in Al0.1Ga0.9N annealed at 1200 °C as 
a function of anneal time. 
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Figure 21. Room temperature electrical activation of implanted silicon in 
Al0.1Ga0.9N  annealed at 1200 °C as a function of anneal time. 

40 



 

The highest activation efficiencies for the 5x1013 and 1x1013 cm-2 silicon implanted 

samples were 83.5 and 82.6%, respectively.  This was achieved by annealing at 1200 ºC 

for 40 minutes.  The peak electrical activation efficiency of the 1x1014 cm-2 sample is 

75.0% which is 14.0% less than the efficiency achieved annealing at 1250 ºC for 20 

minutes.  However there is a vast improvement in the activation of both the 1x1013 and 

5x1013 cm-2 samples.  In all but one of the samples as the anneal time is increased the 

electrical activation is increased. 

4.2 Room Temperature Hall Measurements of Al0.2Ga0.8N 

The Al0.2Ga0.8N samples were implanted with 3 different silicon ion doses of 

1x1013, 5x1013, and 1x1014 cm-2 at room temperature with an energy of 200keV.  The 

samples were annealed at five different temperatures of 1150, 1200, 1250, 1300, and 

1350 ºC for 20 minutes.  All samples were annealed in the Oxy-Gon anneal system.  The 

Hall coefficient and resistivity were obtained using room temperature Hall effect 

measurements. From this data the Hall mobility, sheet carrier concentration, and 

electrical activation efficiencies were calculated 

Precautions were taken to ensure that the AlN protective layer survived, but at 

1350 ºC there was noticeable damage to the sample in the form of liquid gallium on the 

sample surface signifying nitrogen dissociation.  There was some minor damage for 

anneals at 1300 ºC for 20 minutes, but no damage could be seen by visual inspection for 

anneals below 1300 ºC.   

The sheet carrier concentrations of the silicon ion implanted samples are shown in 

Figure 22.  For all of the samples, the background carrier concentration has been  
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Figure 22. Room temperature sheet carrier concentration of implanted silicon in 
Al0.2Ga0.8N annealed for 20 minutes as a function of anneal 
temperature . 



 

subtracted from the measured carrier concentration. The subtracted background carrier 

concentrations are shown in Figure 22.  The average back ground sheet carrier 

concentration of implanted samples was 9.7x 1012 cm-2.  The sheet carrier concentration 

is a function of the anneal temperature and the silicon dopant levels.  The relation 

between dopant levels and sheet carrier concentration is shown in Figure 23.  As the 

anneal temperature goes up the sheet carrier concentration increases.  However, for the 

sample doped with 1x1014 cm-2 silicon, the sheet carrier concentration drops off at 1350 

ºC due to excessive nitrogen dissociation.  On the other hand, sheet carrier concentration 

increased as temperature was raised to 1350 ºC for the Al0.2Ga0.8N samples doped with 

1x1013 and 5x1013cm-2 silicon.  The highest sheet carrier concentration of 9.28 x1013cm-2 

was obtained for Al0.2Ga0.8N doped with 1x1014 cm-2 silicon and annealed at 1300 ºC. 

The Hall mobilities of the implanted Al0.2Ga0.8N samples are shown in Figure 24.  

The highest mobility of 75.7 cm2/V·s was obtained by the Al0.2Ga0.8N sample implanted 

with 1x1014 cm-2 silicon and annealed for 20 minutes at 1350 ºC.  As the anneal temp is 

increased the mobilities of all samples increased, up to 1300 ºC.  At an anneal 

temperature of 1300 ºC, the damage due to nitrogen dissociation and the damaged 

recovery due to annealing vie for dominance.  No conclusion can be reached as to the 

dominant factor without further study.  The values for mobility ranged from 6.00 to 75.7 

cm2/V·s. 
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Figure 23. Room temperature sheet carrier concentration of implanted silicon in 
Al0.2Ga0.8N as a function of implanted ion dose. 
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Figure 24. Room temperature Hall mobility in Al0.2Ga0.8N annealed for 20 
minutes as a function of anneal temperature . 
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Figure 25. Room temperature electrical activation efficiency of implanted silicon 
in Al0.2Ga0.8N  annealed for 20 minutes as a function of anneal 
temperature. 



 

The electrical activation efficiencies of the implanted samples are shown in Figure 

25.  The efficiencies of all the implanted samples are based off of the activation of 

implanted silicon alone.  The highest activation efficiencies for the 1x1014 and         

5x1013 cm-2 silicon implanted samples were 98 and 99%, respectively, which were 

achieved by annealing at 1300 ºC and 1350 ºC, respectively, for 20 minutes.   These 

activation efficiencies suggest removal of implantation damage.  The activation 

efficiency of the samples was a function of anneal temperature as anneal temperature rose 

all samples exhibited greater activation efficiency.  The Al0.2Ga0.8N sample implanted 

with 1x1013 cm-2 silicon showed activation efficiencies 24 to 69% lower than the samples 

implanted with high dopant levels. 

47 



 

V. Conclusions 
 

The electrical properties of silicon implanted AlxGa1-xN have been investigated as 

a function of anneal time, temperature, and ion dose in order to find the optimal 

annealing conditions for best electrical activation. 

Al0.1Ga0.9N wafers, with a 500 Å protective layer of AlN, were implanted at room 

temperature with silicon ion doses ranging from 1x1013 to 1x1014 cm-2 at an energy of 200 

keV.  The samples were annealed at temperatures ranging from 1100 to 1250 ºC for 20 

minutes.  The Hall coefficient and resistivity were measured using room temperature Hall 

effect measurements. From this data the Hall mobility, sheet carrier concentration, and 

electrical activation efficiencies were calculated.  A second set of Al0.1Ga0.9N samples 

were annealed at 1200 ºC for 30 and 40 minutes and their electrical properties were 

assessed.   

This research found that as anneal temperature was increased Hall mobility, sheet 

carrier concentration, and electrical activation efficiency were increased.  The sheet 

carrier concentration is also increased with implanted silicon ion dose.  The highest 

electrical activation of 87 % occurred in Al0.1Ga0.9N implanted with 1x1014 cm-2 silicon 

ions annealed at 1250 ºC for 20 minutes.  However, this caused damage due to nitrogen 

dissociation.  The optimal conditions to maximize electrical activation and mobility for 

the Al0.1Ga0.9N samples occurred when the samples were annealed at 1200 ºC for 40 

minutes.  Electrical activation efficiencies of 82.6 and 83.5% were observed for silicon 

ion doses of 1x1013 and 5x1013 cm-2, respectively.  At these anneal conditions the 

electrical activation of the sample implanted with 1x1014 cm-2 silicon ions was 75%.  
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However, the visual nitrogen dissociation damage is decreased and mobility stayed 

almost the same.  The Electrical activation of the implanted ions in the sample doped 

with 1x1013 cm-2 silicon was poor for all anneal conditions but 1200 ºC for 40 minutes.  

A 500 Å protective layer of AlN was placed on Al0.2Ga0.8N wafers which were 

implanted at room temperature with silicon ion doses ranging from 1x1013 to 1x1014 cm-2 

at an energy of 200 keV.  The samples were annealed at temperatures ranging from 1150 

to 1350 ºC for 20 minutes to determine optimum anneal temperature.  Electrical 

activation efficiencies of 98.7 and 97.8% were obtained in Al0.2Ga0.8N samples having 

ion doses of 5x1013 and 1x1014 cm-2 and annealed for 20 minutes at 1350 and 1300 ºC, 

respectively.  The highest mobility for Al0.2Ga0.8N was 75.7 cm2/V·s for the sample 

having an ion dose of 1x1014 cm-2 and annealed at 1350 ºC for 20 minutes.  Sheet carrier 

concentration in Al0.2Ga0.8N increased with implanted ion dose.  As anneal temperature 

increased the samples showed higher sheet carrier concentrations up to 1350 ºC.  For 

anneal temperatures at or below 1250 ºC, mobility increased with anneal temperature. 

The results of this research compare well with past work with Al0.2Ga0.8N.  An activation 

efficiency of 97.8% was obtained in Al0.2Ga0.8N having an ion dose of 1x1014 cm-2 and 

annealed for 20 minutes at 1300 ºC; this compares to previous work which found an 

activation efficiency of 60% when Al0.2Ga0.8N was annealed at 1350 ºC for 2 minutes 

[8:46].  The activation efficiencies observed in Al0.2Ga0.8N samples having ion doses of 

5x1013 and 1x1014 cm-2 and annealed for 20 minutes at 1350 and 1300 ºC are greater than 

or equal to efficiencies reached using higher doses in Al0.18Ga0.82N and GaN 

[3:6277;2:1930].   
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Observed Hall Mobilities in implanted Al0.2Ga0.8N are greater than what has been 

obtained in past work.  Hall Mobilities of 68.8 and 75.7 cm2/V·s were obtained in 

Al0.2Ga0.8N samples having ion doses of 5x1013 and 1x1014 cm-2 and annealed for 20 

minutes at 1300 and 1350 ºC respectively.  These Hall Mobilities are slightly greater than 

Hall Mobilities obtained in Al0.18Ga0.82N samples at much higher doses of 1x1015 cm-2 

200keV silicon ions annealed at 1250 ºC for 25 minutes[3:6279].  Hall mobility of the 

1x1014 cm-2 sample is 45 cm2/V·s greater than previous results with the same ion dose 

annealed at 1350 ºC for 2 minutes[8:44].   
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Appendix A:  Sample Preparation Procedures [17] 

 

Sample Cleaning Procedures  

Cleanroom:  

1.  Return to cleanroom and turn solvent hood hotplate ON and set to 100 oC; 
Place all cutting disks face-up on hotplate  

2. Set out as many 2” diameter pitri dishes with covers as you have source 
wafers and fill each ~. full w/ acetone.  

3. Once crystal bond has been sufficiently softened, carefully remove each 
sample and place all pieces from each source wafer in their own pitri dish *** 
Organization is crucial to keeping track of which samples are which! ***  

4. Once all the pieces are soaking in covered dishes of acetone, turn OFF the 
hotplate.  

5. Add DI water to each dish with a ratio of acetone: DI of about 3:1 to aid in 
removing the ceramic disk residue.  

6. Fill the ultrasonic cleaner with DI water to the level of fluid in each pitri dish.  
7. Place each dish in the ultrasonic cleaner simultaneously ONLY if you can tell 

them apart, and ultra for 20 seconds.  
8. Remove dishes from the cleaner; carefully flush each dish with clean acetone 

and cover.  
9. Clean each piece one at a time—holding with tweezers, rinse with acetone, 

methanol, and DI water, blowing dry w/N2 and immediately placing in the 
appropriate glassine envelop prepared beforehand.  

10. Once all the samples and remaining source wafers (and remnants) have been 
cleaned and packaged, clean all quartzware with acetone and methanol--
wiping will likely be necessary due to the PR, crystal bond and ceramic 
residue.  

Oxy-Gon Sample Preparation Procedures  

1. Select all the 5 mm x 5mm samples (which were previously cut & cleaned) 
you’ll anneal. 

2. On the cleanroom table, place a clean 3” Si wafer on a cloth wipe. 
3. While holding them face down on the Si wafer, uniquely scribe the Al2O3 

backside of each sample type (e.g., “ / “, “ < ”, “ | “, “O”, “L”, etc.)  
4. Logically (e.g. hot and cold of same dose) and physically (e.g., best size 

match) pair up the samples.  
5. After scribing, place all samples to be annealed in a 2” pitri dish for temporary 

storage and transport.  
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6. Measure out ~ 1¾” of Ta-wire for each sample pair to be annealed, cutting 
one long piece.  

7. Place this single piece of Ta-wire in a 2” pitri dish, submerge the wire in TCE, 
and cover the dish.  

8. Clean all samples again (front and back) with acetone and methanol rinses 
(and, as  

9. necessary to fully remove ceramic disk residue and make each surface mirror-
like, DI H2O), blow dry with N2. Rinse and flush the Ta-wire in the dish with 
acetone, then methanol. While still wet, pull the wire between a clean cloth 
wipe to dry.  

10. Cut the wire into 1¾” sections.  
11. Identify which samples will be wrapped face-to-face noting which sample will 

be on top.  
12. Note: Practicing this process several times on a pair of junk samples is 

recommended.  
13. Place a piece of Ta-wire on a cloth wipe and center the face-to-face samples in 

the middle of the wire.  
14. Using two sets of tweezers, press the center of the samples together while 

wrapping the ends of the wire up and back across the top of the samples.  
15. Bend first one end of the wire 90o at the center of the samples across the other 

wire, then bend the other end 90o so they interlock (like string on a Christmas 
package, or twine on a bail of hay).  

16. Flip the sample pair over and repeat steps 14-15.  
17. Flip the sample pair over and repeat steps 14-15 again, at which point you 

should have just enough wire to complete the final bends (step 15), only here 
interlock the ends and bend 180o vice 90o.  

18. Keep the samples fully face-to-face throughout the process and wrap them 
securely. Any uncovered regions along the edge will be destroyed by the 
anneal—the samples must overlap perfectly!  

19. Place the sample pair in the glassine envelope of the sample that started (and 
finished) on top.  

20. Repeat steps 13-19 for each sample pair.  
21. Place all the glassine envelopes in a plastic box and double bag for transport 

to anneal furnace.  
22. Be sure to bring tweezers, gloves, wipes, and a metal dish for transport 

to/from the furnace.  

Oxy-Gon AlN/GaN Anneal Procedures  

System Start-Up:  

1. Turn on Nitrogen gas and facility air. 
2. Turn on “Main” power switch. 
3. Make sure isolation valve is in the open. 
4. Open load chamber door. 
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5. Place the specimen onto specimen holder (hearth). Check O-ring on door of 
load chamber. 

6. Close and secure the load chamber door. 
7. Turn on the roughing pump.  Wait 2 minutes. 
8. Press “Standby”. 
9. When vacuum TC-2 reaches 10-2 Torr, turn on the turbo pump.  Allow the 

turbo pump to come up to operating speed (green light on turbo controller). 
10. Press “Evacuate”.  With the Isolation valve open, this will allow both the load 

chamber and the furnace chamber to be evacuated. 
11. When vacuum TC-1 is less than 9x10-2 Torr, the roughing valve will close.  

After a 2 second delay, the fore-line valve will openfollowed by the high 
vacuum valve. 

12. When TC-1 reads less than 1x10-3 Torr, wait 5 minutes, and then turn on the 
ion gauge (press the “EMIS” button on the gauge controller). 

13. When the chamber reaches a pressure less than 5x10-5 Torr, turn off the ion 
gauge and press the “Backfill” button. (V1 and V2 will open and the yellow 
indicators for each will illuminate.) 

14. Open the flow meters in order to allow the chambers to achieve 2.0 PSIG (PS-
1 and PS-2 yellow indicators for each chamber will illuminate). 

15. Reduce the gas flow.  Set flow meters for 2.0 LPM. 
16. Press “Evacuate” 
17. Repeat steps #13 thru #15. 
18. Backfilling will continue through the annealing process. 
19. Open water valve on the floor, wait 1 minute then turn “ON” heat zone. 
20. Close isolation valve and bottom shields. 
21.  Put temperature control in “Auto”.  Set controller to desired temperature.  

The oven will heat according to the ramp rate.  Currently set for 100°C/min. 
22. When desired temperature is reached and stabilized open the isolation valve 

and the bottom shields. 
23. Press the “Hearth Up” button to move the samples into the oven chambers.  

When the hearth is in place, close the bottom shields and turn the “Isolation 
Valve” switch into the “Closed” position. 

24. At the end of the annealing process open the bottom shields and press the 
“Hearth Down” button.  The samples will lower into the load chamber.  The 
isolation valve will automatically close after the samples have been lowered 
into the load chamber. 

25. Close the “Bottom Shields”. 
26. Make sure that the system is continuing to backfill during cooling.  Allow 

your samples to cool to 25°C before opening the load chamber. 
27. Load next samples.  Check O-ring seal on the load chamber door.  If it 

appears that it is dry some high vacuum grease should be applied. 
28. Backfill the load chamber. 
29. Open the flow meters in order to allow the chambers to achieve 2.0 PSIG (PS-

1 and PS-2 yellow indicators for each chamber will illuminate). 
30. Reduce the gas flow.  Set flow meters for 2.0 LPM. 
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31. Press “Standby”. 
32. Press “Evacuate”. 
33. When the chamber reaches a pressure less than 5x10-5 Torr, turn off the ion 

gauge and press the “Backfill” button. (V1 and V2 will open and the yellow 
indicators for each will illuminate). 

34. Open the flow meters in order to allow the chambers to achieve 2.0 PSIG (PS-
1 and PS-2 yellow indicators for each chamber will illuminate). 

35. Reduce the gas flow.  Set flow meters for 2.0 LPM. 
36. Open the isolation valve and bottom shields. 
37. Press the “Hearth Up” button to move the samples into the oven chambers.  

When the hearth is in place, close the bottom shields and turn the “Isolation 
Valve” switch into the “Closed” position. 

38. At the end of the annealing process open the bottom shields and press the 
“Hearth Down” button.  The samples lower into the load chamber.  The 
isolation valve will automatically close after the samples have been lowered 
into the load chamber. 

39. Close the bottom shields. 
40. Make sure that the system is continuing to backfill during cooling.  Allow 

your samples to cool to 25ºC before opening the load chamber.  
 
Shutdown- After samples have been removed: 

1. Turn off the heat zone. 
2. Open the isolation valve and the bottom shields. 
3. Allow heat zone to cool down to room temperature. 
4. At 100°C or lower the facility water can be shut off. 
5. Press “Standby”. 
6. Press “Back fill”- allow chambers to achieve equal pressure. 
7. Press “Standby” and let the oven temperature drop to below 30°C. 
8. Close isolation valve and heat shields. 
9. Turn off the turbo pump. 
10. Turn off the mechanical pump. 
11. Shutdown “Main” power 
12. Turn off the nitrogen gas and facility air 
 
 
 

Post-Anneal Contact Preparation Procedures  

13. Obtain HCl and HNO3 acids and place within the acid fume hood 
14. Turn ON one solvent fume hood hotplate and set to 140 oC 
15. Turn ON the second solvent fume hood hotplate and set to 90 oC. 
16. Fill a clean 250 ml quartz beaker with 50 ml of DI H2O; cover and place on 

the 140 oC hotplate.  
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17. On the cleanroom table, place an annealed Ta-wire-wrapped sample pair on a 
clean cloth wipe.  

18. Using two sets of tweezers, carefully break off the brittle Ta wire-wrap, 
keeping track of which sample is which throughout the process.  

19. Visually examine the AlN surface for signs of Ga droplets, cracking/peeling 
etc. (A good AlN surface post anneal will be as mirror-like as when it was 
wrapped.)  

20. If the identifying scribe markings on the backside are no longer clearly 
distinguishable (at any angle or over a reflective Si wafer) place the sample on 
a clean 3” Si wafer and re-scribe.  

21. Place the samples in a 2” pitri dish for temporary storage and transport.  
22. Repeat steps 4-8 for each sample pair you have annealed.  
23. Weigh out 1.63 g of KOH pellets (86% KOH) and tightly close the double 

bag.  
24. Quickly place all pellets into the beaker of hot DI H2O as the pellets will 

begin to melt in air.  
25. Stir with tweezers until all pellets are fully dissolved and cover the beaker. 

(Although the hotplate is set at 140 oC, the DI H2O will not boil, typically 
reaching at most 95 oC.)  

26. *** Note: ensure the evaporator is not in use before proceeding with any acid 
processing.  

27. Measure out 30 ml of HCl and place in a clean 250 ml quartz beaker.  
28. Measure out 10 ml of HNO3 and add to the HCl; gently circulate and cover 

the aqua regia.  
29. Process ONLY the good morphology samples as the first batch (< 5-10% total 

metallic Ga surface area is good). Process all other samples in the second 
batch.  

30. Place each sample in the 0.5M hot KOH solution; starting a 5 min timer on the 
first sample.  Use a 10minutes timer for AlxGa1-xN.  

31. Continue placing samples one at a time at the same rate in the KOH 
sequentially along the circumference of the beaker and cover when finished.  

32. When the samples have only 1 minute left in the KOH, bring the covered 
beaker of aqua regia to the solvent fume hood and place on the 90 oC hotplate.  

33. At 5 minutes, remove the samples at the same rate and in the same order in 
which you inserted them.  

34. As each sample is removed, place it into a large (600 ml) beaker of clean DI 
H2O.  

35. Carefully rinse the samples in the beaker by dumping most of the DI/adding 
clean DI, dumping/adding—taking care to not even come close to loosing any 
samples. Leave at most 1” of DI in beaker.  

36. When the aqua regia just begins to boil, place the samples into the acid 
solution directly from the DI beaker; starting a 2 minute timer on the first 
sample.  

37. Continue placing samples one at a time at the same rate in the aqua regia 
sequentially along the circumference of the beaker and cover when finished.  
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38. At 2 minutes, remove the samples at the same rate and in the same order in 
which you inserted them.  

39. As each sample is removed, place it into a large beaker of clean DI H2O.  
40. When all the samples are in the DI, cover the aqua regia and turn off the 90 

oC hotplate.  
41. At this point, you may need to rinse a green residue off the metal tweezers, 

wipe, rinse and blow dry with N2  
42. Carefully rinse the samples in the beaker by dumping most of the DI/adding 

clean DI, dumping/adding—taking care to not even come close to loosing any 
samples. Leave at most 1” of DI in beaker.  

43. Holding with tweezers, agitate each sample in the DI, remove, blow dry with 
N2 and place in a clean 2” pitri dish.  

44. Repeat steps 18-31 for the second batch as necessary using the same acid and 
base solutions.  

45. On the cleanroom table, carefully mount all samples face down on the van der 
Pauw shadow mask on a clean cloth wipe.  

46. Adjust and secure each sample by gently tightening mounting screws until all 
samples are positioned for contacts as much in the corners as possible.  

47. Note: Each row on the mask is a different sized square; generally the largest 
two square rows are best.  

48. *** Note: This is an iterative and tedious process as tightening one sample 
may loosen another. ***  

49. When all samples are securely squared, vent the evaporator and carefully 
insert the mask.  

50. Remember to change the microscope window slides, check metal levels, 
secure door and “process”.  

51. Turn off both hotplates, clean up all acids, bases, DI, Ta-wire-pieces, etc.  
 

Edwards Auto 306 Evaporator Procedures  

Sample preparation:  

1. Degrease sample with solvents (acetone, methanol) DI rinse and N2 blow dry  
2.  Remove any oxides with 2 minutes of boiling aqua regia (HNO3:HCl, 1:3), 

DI rinse and N2 blow dry 
 

Vent chamber, Mount/Remove sample & Create vacuum:  

1. Ensure chamber is not in use and has been cooled for at least ½ an hour after 
the last evaporation. 

2. Press “Seal/Vent” and lift chamber clip—door will open easily at 7.6E2 
Torr—not until. 

3. When vented, open chamber door and remove sample jig—if removing, do so 
& go to Step 7.  
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4. Mount cleaned sample(s) properly on jig  
5. Physically verify the metals in each carousel positions and note for assigning 

layer parameters.  
6. Check amount of metal in hearths to be used and fill only as necessary—half 

full is OK.  
7. Insert jig into chamber, and secure door.  
8. Press “Process” to start vacuum.  
9. Fill liquid N2 reservoir to improve pump-down time.  
10. Confirm metal parameters on each layer to be used (density, tooling, z-factor, 

etc.).  
11. Program the thickness for each layer in nm.  
 
Evaporation:  

1. Wait until vacuum = 2x10-7 Torr is obtained 
2. Turn electron Gun Power Supply ON. 
3. Turn gun and on/off ON, and wait for lights (Power, Vac, H2O, Rot, Gun, 

Local, and Beam).  
4. Check ~4.85 kV high voltage setting and 15-17 oC water chiller.  
5. Using Data button, select appropriate layer and confirm settings changing as 

necessary.  
 Ti Al Au Ni 
Layer 1 4 2 3 
Density 4.5 2.7 19.3 8.91 
Z-factor 14.1 8.2 23.2 26.6 
Tooling 0.85 0.85 0.85 0.85 
Beam for evap 120 mA 45 mA 120 mA 125mA 
 
6. Ensure shutter is closed and no shutter control buttons are pushed.  
7. Activate Beam Sweeping by setting control knob to “1”.  
8. Turn Beam Current control knob to 1st notch (~ 20 mA).  
9. Slowly ramp Beam Current up in 20 mA steps every several seconds, 

monitoring vacuum pressure—don’t let pressure exceed 1x10-5 Torr.  
10. If metal has not been used recently, evaporate off impurities by getting metal 

liquid hot (i.e., at the onset of evaporation—watch for solid to liquid phase 
change) otherwise go to step 12.  

11. As necessary, allow chamber to return to 2x10-7 Torr, then repeat starting at 
step 9.  

12. Stop ramping Beam Current when desired beam current is achieved, or turn 
down if 9x10-6 Torr is exceeded.  

13. Arm shutter by depressing Remote button  
14. Press “Run” to open shutter and start evaporation, noting start time.  
15. Watch deposition rate and pressure; modify Beam Current to keep both within 

proper limits.  
16. Log time when deposition completes.  
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17. Turn Beam Current down slowly (2-3 seconds) to zero.  
18. Activate Carousel and move to position of next metal, else go to step 21 if 

done evaporating.  
19. Using Data button, select appropriate layer and confirm settings changing as 

necessary.  
20. Go to Evaporation step 8 when chamber returns to 2x10-7 Torr  
21. Deactivate Beam Sweeping, Carousel, and disarm shutter Remote.  
22. Turn gun and on/off OFF, turn Gun Power Supply OFF.  
23. Log evaporation results into the Evaporation log book.  
24. Wait at least ½ hour and follow vent procedures.  

Probe Station Operating Procedures 

System Start-Up 

1. Turn on vacuum and nitrogen gas under probe station. 
2. Turn on computer and monitor. 
3. Turn on video camera. 
4. Turn on microscope light above probe station. 
5. Turn on HP 41501A and 4155A units. 
 

Probe and Connection Configuration 

1. Use the triax connector probes only. 

2. Must be connected to ports 1 and 3. 

 

Electrical Setup 

1. Press MEM4 on 4155A for diode measurements. 
2. Use SMU1 and SMU3. 
3. Under the “Page Control” section press the “Chan” button (press “Chan” 

button anytime to return to this setup page). 
4. Press “Meas”. 
5. Choose single sweep. 
6. Press arrow up and down keys to move to start. 
7. Enter start voltage±. 
8. Enter stop voltage±. 
9. Step size is variable from 100 µV to 100 milli volt is typical. 
10. Compliance is the maximum current limit applied to the device. 
11. Press (under “Page Control”) “Display”. 
12. Use arrow down to move through options. 
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13. Enter min start and max stop voltages. 
14. Press display when finished. 
 
Sample Setup 

1. Put sample on vacuum stage over small centered opening. 
2. Flip toggle switch to apply vacuum (located on the left side of the instrument). 
3. Place probes on sample. 
4. Press “single on the measurements panel. 
5. Use default computer display program. 
Shut down 

1. Remove test sample. 
2. Turn off all equipment including camera and lamp 
3. Shut off nitrogen gas and vacuum 
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